Overview of the Diamond Light Source Project

Diamond

- Diamond is the new UK Synchrotron Light Source
- Located at the Rutherford Appleton Laboratory (RAL) Oxfordshire
- Due online early 2007 (First beam SR Jan 2006)
- Designed to complement the ESRF
 - UK has 14% stake in

Master Schedule

Appoint Main Building Contractor Jan. ¹
--

Jan. '07

Location of Diamond in the UK

Location on the RAL Site

Diamond Design Criteria

- Large capacity for Insertion Device beamlines
- High brightness from undulators optimised in the range 0.1-10 keV, extending to 15-20 keV
- High flux from wigglers from 20-100 keV
- Cost constraint
- → "medium" light source energy of 3 GeV
- → relatively large circumference (562 m) and no. of cells (24)
- → extensive use of in-vacuum undulators

Main Parameters

Electron Beam Energy 3 GeV

Storage ring circumference 561.6 m

Number of cells 24

Symmetry 6

Straight section lengths 6 x 8 m, 18 x 5 m

No. Insertion devices 4 x 8 m, 18 x 5 m

Beam current 300 mA (500 mA)

Emittance (hor., vert.) 2.7, 0.03 nm rad

Lifetime > 10 h (20 h)

Min. ID internal gap 7 mm (5 mm)

Synchrotron radiation power 300 kW

(at 300 mA, without Insertion devices)

Mark Heron Sept 2004

Goal:

Diamond performance

DIAMO	OND Beam Sizes	
	5 m Straight	8 m Straight
$\sigma_{\!_{\!\scriptscriptstyle X}}$	79.9 µm	166.0 µm
$\sigma_{\!_{\! X}}$,	35.0 µrad	15.6 µrad
$\sigma_{\!$	7.8 µm	15.6 µm
$\sigma_{\!y}$,	3.1 µrad	1.6 µrad

Diamond buildings: detailed design

STABILITY:

minimise thermal variations experimental hall +/- 1 °C storage ring tunnel +/- 0.5 °C

Courtesy of JacobsGibb Ltd.

Linac

 'Turn-key' contract for 100 MeV Linac includes installation and commissioning to a performance spec.

DLS supplies vacuum, controls and diagnostic equipment.

Main parameters

max. frequency5 Hzmultibunch charge $\geq 3 \text{ nC}$ multibunch pulse length300 nssingle bunch charge $\geq 1.5 \text{ nC}$ normalised emittance $\leq 50 \text{ mm mrad}$ energy spread $\leq \pm 1.5 \%$ top-up capabilitylow charge, variable pulse sequences etc.

- Technical solution:
 - 500 MHz modulated thermionic gun
 - 500 MHz pre-buncher, 3 GHz pre-buncher and buncher
 - two 5.2 m constant gradient accelerating sections fed by separate 35 MW klystrons

Booster

- 22 Cell FODO lattice with 36 dipole magnets
- Missing dipole straights used for injection, extraction, RF and diagnostics

Injection energy
Circumference
Current, max
Emittance
Tunes
Nat'l chromaticity
Frequency

100 MeV 158.4 m 6 mA 135 nm rad 7.16, 4.11 -0.3, -6.2 5 Hz

Booster

Beam-stay-clear

44 x 16 mm

quads 50.4 x 17.8 mm

& sexts

dipoles

Vac. vessel int.

46 x 17.2

52 x 24

Magnet

gap = 21 mm

ro quad = 21 mm

ro sext = 24 mm

rms Power = 137 kW

Call for Tender for "magnet and vacuum assembly units" about to be made (86 % of the booster circumference)

Separate procurement of other components

Installation and assembly by DLS

Storage Ring

Lattice has remained the same as reported at EPAC '02

Vacuum vessel and BPM supports

Power Supplies

- 1200 Switched Mode Power Converters for DC and Low Frequency Magnets.
- 10 Pulsed Power Supplies to transfer the electron beam from Linac to Booster and Booster to Storage Ring.

	Number	Curren t (A)	Voltag e (V)	Frequency (Hz)
Storage Ring				
Dipole	1	1500	500	DC
Quadrupole	240	200	30	DC
Sextupole	168	100	20	DC
Fast Corrector	192	<u>+</u> 16	<u>+</u> 55	1000
Slow Corrector	504	<u>+</u> 5	<u>+</u> 20	50
Booster				
Dipole	1	975	2000	5
Quadrupole	2	200	400	5
Sextupole	2	20	50	5
Corrector	44	<u>+</u> 5	<u>+</u> 20	50

Superconducting RF System

2 s/c RF cavities for Day 1 (7 IDs and 300 mA)

3rd cavity being designed in

independent RF systems (IOTs/klystron)

CFTs issued for cavities and amplifiers

Super conducting Cavity from Accel

schematic of a storage ring cavity

diamond

Cavities: 3 × superconducting cavities, operating temperature -269°C

Power Amplifiers: 3 x 300 kW power amplifiers (500 MHz)

Cryogenic System: capable of producing ~ 200 L of Liquid helium from warm gas / hr; completely enclosed system ensuring no loss of helium

Insertion devices (Phase I)

Name	Period (mm)	Length (m)	Type
MPW60	60	1.0 - 2.0	3.5T s/c wiggler
U33	33	4.9	standard
U23 Iva	23	2.0	in-vacuum
U23 IVb	23	2.0	in-vacuum
U21 IV	21	2.0	in-vacuum
U27 IV	27	2.0	in-vacuum
HU64	64	2 x 2.2	APPLE-2

Being designed and constructed "in-house" (currently by the ASTeC ID Group at CCLRC-Daresbury)

Designs well advanced and purchasing about to start

Diamond Phase-I Beamlines

- Protein crystallography (3 beamlines)
 For the determination of the structure of macromolecules with rapis sample through-put.
- Extreme conditions
 Study of materials at very high temperatures and pressures, typical of planetary interiors and industrial processes.
- Materials and magnetism Study of materials including magnetic systems, high temperature superconductors
- Microfocus chemical imaging and structural studies of complex multicomponent systems with sub-micron resolution
- Nanostructures
 To study the morphology, chemical and magnetic state of nanostructures with <10 nm resolution.

 Mark Heron

 Mark Heron

Sept 2004

Future Beamlines

Being constructed, 7
Phase One + Phase 2
NCD Beamlines

Being Considered for Phase 2

Possible future Beamlines Proposals

Go-ahead has been given to start the design and construction of 14 Phase 2 beamlines diamond

Storage Ring Building Sept 2004

Linac Vault Sept 2004

Booster Vault Sept 2004

